$\underline{\alpha}$ -DIALKYLAMINOALKYLNITRILES: PRACTICAL REAGENTS FOR NUCLEOPHILIC ACYLATION

Vichai REUTRAKUL, * Piniti RATANANUKUL, * and Surachai NIMGIRAWATH

*Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 4, Thailand Department of Chemistry, Faculty of Science, Silapakorn University, Nakorn Pathom, Thailand

An efficient synthesis of $\underline{\alpha}$ -hydroxyketones from the reaction of carbonyl compounds and lithio $\underline{\alpha}$ -dialkylaminoalkylnitriles is described.

The $\underline{\alpha}$ -hydroxy carbonyl moiety is a very important functional group frequently encountered in many natural products. Methods for the synthesis of this class of compounds have been reported. In most cases the reagents employed are not only expensive but great care must be taken during their preparations. We wish to report a general and convenient method for the synthesis of $\underline{\alpha}$ -hydroxyketones involving the additions of the carbanions $(\underline{1}$ and $\underline{2})^3$, derived from easily accessible \underline{N} , \underline{N} -dialkylaminoalkylnitriles to carbonyl compounds. Hydrolyses of the adducts gave the corresponding $\underline{\alpha}$ -hydroxyketones in high yields (eq.1).

The following procedure is representative: solutions of the carbanions $\underline{1}$ or $\underline{2}$ were generated by the reaction of lithium diisopropylamide (1 equiv.) with the corresponding $\underline{\alpha}$ -dialkylaminoalkylnitriles (1 equiv.) in tetrahydrofuran at -78°C for 45 min. After the additions of the carbonyl compounds had been completed, the reaction mixtures were stirred for 5 hr longer at -78°C before being hydrolyzed with hydrochloric acid (2N) for 24 hr at room temperature. The products were extracted with chloroform and further purified by column chromatography on silica gel. The results are summarized in Table I.

Table I

Carbonyl Compounds;		$\underline{\alpha}$ -Hydroxyketones; $CH_3(CH_2)_n$ $CH_3(CH_2)_n$ OH_0		
$CH_3(CH_2)_nCHO; n =$	R ₁ Yiel	ds % NMR(CDC1 ₃) OH O		
4	CH ₃ 69	2.2(3H,s); 3.5(0 <u>H</u> ^a ,m); 4.2(1H,m); 0.9-1.4(11H,m)		
	С ₂ Н ₅ 62	1.1(3H,t,J 7Hz); 2.5(2H,q,J 7Hz); 3.6(0 <u>H</u> ^a ,m); 4.2(1H,m);		
	2 0	1.0-1.3(11H,m)		
5	CH ₃ 73	2.2(3H,s); 3.5(0 <u>H</u> ^a ,m); 4.2(1H,m); 0.8-1.3(13H,m)		
	С ₂ Н ₅ 68	1.1(3H,t,J 7Hz); 2.5(2H,q,J 7Hz); 3.4(0 <u>H</u> ^a ,m); 4.2(1H,m);		
	2 3	0.9-1.5(13H,m)		
6	CH ₃ 70	2.2(3H,s); 3.5(0 <u>H</u> ^a ,m); 4.2(1H,m); 0.9-1.3(15H,m)		
	С ₂ Н ₅ 67	1.1(3H,t,J 7Hz); 2.5(2H,q,J 7Hz); 3.6(0 <u>H</u> ª,m); 4.2(1H,m);		
	2 3	0.9-1.3(15H,m)		
12	CH ₃ 72	2.2(3H,s); 3.5(0 <u>H</u> ^a ,m); 4.2(1H,m); 0.8-1.3(27H,m)		
	C ₂ H ₅ 57	1.1(3H,t,J 7Hz); 2.4(2H,q,J 7Hz); 3.9(0 <u>H</u> ^a ,m); 4.2(1H,m);		
	2 3	0.8-1.3(27H,m)		

Tahla	т .	(contd.	١
lable	1	i conta.)

Carbonyl Compounds; $ \begin{pmatrix} 0 \\ C \\ D \end{pmatrix} $; n =	$\underline{\alpha}$ -Hydroxyketones; $\overline{(CH_2)_n}$ $\overline{0}$
4	CH ₃ 55 3.6(O <u>H</u> ^a ,s); 2.3(3H,s); 1.7(8H,m)
	C ₂ H ₅ 60 3.6(O <u>H</u> ^a ,s); 2.6(2H,q,J 7Hz); 1.1(3H,t,J 7Hz); 1.9(8H,m)
5	CH ₃ 68 3.6(0 <u>H</u> ^a ,s); 2.3(3H,s); 1.7(10H,m)
	C ₂ H ₅ 72 3.6(O <u>H</u> ^a ,s); 2.6(2H,q,J 7Hz); 1.1(3H,t,J 7Hz); 1.6(10H,m)
6	CH ₃ 74 3.6(OH ^a ,s); 2.2(3H,s); 1.7(12H,m)
	C ₂ H ₅ 73 3.8(O <u>H</u> ^a ,s); 2.6(2H,q,J 7Hz); 1.1(3H,t,J 7Hz); 1.5(12H,m)
7	CH ₃ 76 3.4(O <u>H</u> ^a ,s); 2.2(3H,s); 1.7(14H,m)
	C_2H_5 78 3.4(0 \underline{H}^a ,s); 2.6(2H,q,J 7Hz); 1.1(3H,t,J 7Hz); 1.7(14H,m)

 $^{^{\}mathrm{a}}$ Signals disappeared upon deuteration with $\mathrm{D}_{2}\mathrm{O}.$

Our results clearly demonstrated the immense potential of the $\underline{\alpha}$ -dialkylaminoalkylnitriles as the acyl carbanion equivalents. Our preliminary results also indicated that the anions $\underline{1}$ and $\underline{2}$ also reacted smoothly with Michael acceptors and other electrophiles. Further exploratory work is now in progress.

REFERENCES

- 1. a, A.S. Kende, Y. Tsay, and J.E. Mills, J.Am.Chem.Soc., <u>98</u>, 1967(1976); b, J.E. Baldwin, O.W. Lever Jr., and N.R. Tzodikov, J.Org.Chem., 41,2312 (1976).
- 2. a, G.A. Russell and M. Ballenegger, Synthesis, 104 (1973); b, J.E. Baldwin, G.A. Höfle, and O.W. Lever Jr., J.Am.Chem.Soc., 96, 7125(1974); c, G.M. Rubottom, M.A. Vazquez, and D.R. Pelegrina, Tetrahedron Lett., 4319 (1974); d, S. Hünig and G. Wehner, Synthesis, 391 (1975); e, H. Stetter and G. Dämbkes, Synthesis, 403 (1977); f, L. Colombo, C. Gennari, C. Scolastico, and M.G. Beretta, J.C.S. Perkin I, 1036 (1978); g, E. Vedejs, D.A. Engler, and J.E. Telschow, J.Org.Chem., 43, 188 (1978); h, W. Dumont, D.V. Ende, and A. Krief, Tetrahedron Lett., 485(1979).
- 3. In the case of R $_1$ = CH $_3$ and R $_2$ = CH $_3$ -, the reaction of the corresponding carbanion with carbonyl compounds gave low yields of the $\underline{\alpha}$ -hydroxyketones and the products were very difficult to purify. When R $_1$ = C $_2$ H $_5$ -, we noticed no difference in the yields of the $\underline{\alpha}$ -hydroxyketones both the cases of R $_2$ = CH $_3$ and R $_2$ = C $_2$ H $_5$ -.
- 4. When our investigation was initiated, only one brief report on the reaction of $\underline{\alpha}$ -alkylaminonitriles was recorded: Z. Welvart, Bull.Soc.Chim.France, 1653 (1961). Very recently two reports on the applications of the $\underline{\alpha}$ -aminonitriles derived from aliphatic aldehydes have appeared: H. Ahlbrecht, and K. Pfaff, Synthesis, 897 (1978); G. Stork, A.A. Ozorio, and A.Y.W. Leong, Tetrahedron Lett., 5175 (1978). On the other hand, the chemistry of $\underline{\alpha}$ -aminonitriles derived from aromatic and heterocyclic aldehydes is quite well known: J.D. Albright, F.J. McEvoy, and D.B. Moran, J.Heterocyclic.Chem., $\underline{15}$, 881 (1978); V. Reutrakul, S. Nimgirawath, S. Panichanun, and P. Ratananukul, Chem.Lett., 399 (1979).
- 5. D.B. Luten Jr., J.Org.Chem., 3,588 (1939).

(Received September 29, 1979)